
Nuclear Magnetic 
Resonance

Week 2 NMR: The Vector Model of Pulsed 

NMR Spectroscopy



Problem Sets
• The problem sets should be solved most efficiently jointly and 

interactively during the problem sessions by the groups. 
Attendance and active participation is therefore very important 
to save time and to improve learning.


• After the session, each group should finalise their answers 
and upload the finished version (one single agreed version 
per group).


• Once we have all the answers from all the groups, then we will 
post them on Moodle, together with any required corrections


• These are an integral part of the course material.



What we learned so far
• What an NMR spectrum looks like


• The principle interactions leading to NMR spectra:


• The Zeeman interaction leading to the Larmor 
frequency


• The chemical shift


• The scalar (J) coupling



Objectives
• Understand the vector model of time-domain NMR 

spectroscopy











Nα/Nβ = exp(-ΔE/kBT) ~ 1.0001

Nuclear polarisation, P, is defined as:
ΔE = 0ΔE = γħB0

Nuclear Polarisation 

The NMR signal is directly proportional to P. 


At equilibrium, polarisation can be most obviously increased by increasing B0, or by 
decreasing T. Both options are limited by practicalities in most cases. B0max (2021) ~ 23 
T. Tmin (solutions) ~ 270 K.


Methods to increase P beyond the equlibrium value are called “hyperpolarization” 
techniques. We will not discuss such methods here.

The ratio of the populations of the α to β states,

as seen last week, is

It varies from 0 for an unpolarised system, 

where the populations are equal, to 1 for a fully 
polarised system when only the ground state is 
populated.

!β⟩

!α⟩

P = tanh(γℏB0/2kBT)



The ideal cylindrical geometry is a cylinder of infinite length. In practice, the best known 
approximation of this configuration is the solenoid coil. This coil gives the best 
sensitivity of magnetic resonance among all resonator designs.

In comparison a saddle coil is roughly a factor √2 less sensitive. However, most 
solution-state NMR is done using saddle coils, because they provide access for the 
sample from the top. Coil geometry needs to be compliant with many factors, including 
the sample! Solenoids are often not possible.

Geometry of the Detection Apparatus

A solenoid coil (left), a saddle coil (middle) and a Helmholtz coil (right). The three of them yield a 
homogeneous magnetic field in the center with a direction represented by an arrow.
(from A.J. Perez-Linde, PhD thesis, Nottingham)

A shoulder coil for MRI. Coil geometry 
needs to be compliant with many factors, 
including the sample! Solenoids are 
often not possible.

Further reading: Homogeneous resonators for magnetic resonance: A review

https://www.sciencedirect.com/science/article/pii/S1631074807002652



Sample Size: If all other factors are equal, the 
NMR signal is proportional to the number of 
spins. Doubling the volume of the sample 
inside a given coil will thus double the signal. 
However, doubling the volume in a properly 
optimised system will involve also doubling the 
coil volume, which will also increase the noise.  

Sample Concentration: In a given sample, 
the NMR signal will be directly proportional to 
the number of spins. Thus:

S ∝ [concentration].


e.g. Doubling the concentration of a sample 
will double the signal size. This also means 
that relative signal intensities within an 
NMR spectrum are quantitative reporters of 
relative concentrations. (As long as the 
experiment is carefully done to avoid some 
pitfalls).

Size and Concentration of the Sample

figure: https://scilearn.sydney.edu.au/organicspectroscopy/?type=nmr&page=the%20spectrum



The signal S detected in an NMR experiment based on the inductive coupling of the spins with a 
pickup coil can be expressed by the classic formula of Hoult and Richards:

where, Vs is the sample volume, S is the spin angular momentum quantum number, N is the spin 
density (number of spins per unit volume). The factor B1/I, the magnetic field per unit current, is 
defined as the coil sensitivity, and is inversely proportional to the diameter of the coil. The NMR 
signal-to-noise ratio is derived by dividing this signal by a noise voltage Vnoise,

where Δf is the receiver bandwidth, and TN is the noise temperature which is a function of both 
the temperature and the effective resistance of the sample and the coil:

Summary

D. J. Hoult, R. E. Richards, J. Magn. Reson. 1976, 24, 71– 85
from https://doi.org/10.1002/anie.201410653









Because the population difference between 
the energy levels is very small, the NMR 
signal tends to be weak. As a result it is 
almost never the case that the spectrum from 
a single acquisition has sufficient a signal-to-
noise ratio to be useful. 

In order to improve the signal-to-noise ratio we 
use time averaging. We repeat the experiment 
a number of times and then add together the 
resulting spectra. The signal part adds up so 
that after N experiments the signal will be N 
times stronger. However, the noise, because it 
is random, adds up more slowly typically 
increasing as √N. (Note that adding random 
noise does not lead to it cancelling out). 

Repeating the experiment N times thus yields 
an improvement in the signal-to-noise ratio by 
a factor of √N.

NMR Sensitivity: the signal-to-noise ratio
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see Keeler, chapter 2 and chapter 5



Timing diagram showing how a basic NMR spectrum is recorded. The
line marked ‘tx’ shows the location of “pulses.” The NMR signal is detected by a 
receiver during the times shown on the line marked rx. During time tr the spins are 
allowed to return to equilibrium.

A very short “pulse” is applied for time tp and then the resulting signal or “free 
indiction decay” (FID) is recorded for time tacq. In order to improve the signal-to-noise 
ratio, the whole process is repeated several times over and the FIDs are added 
together; this process is called time averaging. Here, the experiment is repeated 
three times.

Time averaging to improve SNR
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see Keeler, chapter 2 and chapter 5





We made quite a lot of progress towards understanding the form of NMR spectra by 
working from the energy levels and selection rules. 

However, this has brought us no closer to understanding how even the 
simplest pulse acquire NMR experiment actually works. 

Ultimately it is only quantum mechanics which will give us the complete 
understanding we are looking for. 

However, before we embark on the full rigours of that approach we will spend some 
time exploring the much simpler vector model.

Understanding NMR Spectroscopy
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Nuclear Magnetic Moments

Some nuclei posses spin angular momentum. It 
turns out that associated with this angular 
momentum there is always a nuclear spin 
magnetic moment; what this means is that the 
nucleus generates a small magnetic field (as if 
it were a tiny bar magnet):

The energy of interaction between a magnetic moment and an applied 
magnetic field depends on the angle θ between the magnetic moment and 

the field direction.
The lowest energy arrangement is when the magnetic moment is parallel to 

the field (θ = 0), and the highest energy arrangement is when the moment is 
anti-parallel to the field (θ = π radians).

μ = γhI
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As a result of the disruption due to thermal motion, the individual magnetic 
moments are not all able to adopt the lowest energy arrangement in which they 
align with the field. 

For nuclear magnetic moments the interaction with the field is so small that, across 
the sample, the arrangement of the moments is almost random. 

Bulk Magnetization of the Sample
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However, there is a small (<0.1%) preference for alignment with the field and this, 
when averaged over the sample, gives rise to a bulk magnetization, M, of the 
sample, parallel to the field direction.

This magnetization can be represented by a vector, called the bulk 
magnetization vector.

Bulk Magnetization of the Sample
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Nuclear Magnetic Relaxation to Equilibrium

In the absence of a 
magnetic field all 

orientations have the 
same energy: moments 
are oriented randomly.

in B0 to start with the 
magnetic moments are still 
oriented randomly so there 

is no net magnetization

Over time random 
molecular motion ensures 

that the lower-energy
orientations are 

preferentially populated
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Equilibrium
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If we choose (by convention) the applied magnetic field B0 to be aligned 
along the z direction of the coordinate system, the energy of the moments 
is independent of the orientation of the moment in the xy-plane. As a result 
there is no energetic preference for any particular orientation in the xy-
plane, so at equilibrium we expect that the x- and y-components of the 
individual magnetic moments will be distributed randomly. At equilibrium M 
is aligned with the direction of the magnetic field B0
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Larmor Precession

At equilibrium the magnetisation vector is stationary.
However, if the magnetization vector was tipped away from the z-axis, by 
an angle β then the magnetization vector would rotate about the direction 
of the magnetic field sweeping out a cone with angle β.
This kind of motion is called precession – the vector is said to precess 
about the field.

ω0 = −γB0 in rad s−1 

or 

υ0 = −γB0/2π in Hz



The Larmor Theorem (Proof)
The	Larmor	Theorem	(Proof).	The	theorem	states	that	the	motion	of	the	magnetic	moment	M	in	a	magnetic	field	B	is	a	precession	
around	that	field.	The	proof	is	as	follows:	
	

(i) the	energy	of	the	moment	in	the	field	is	
! = −! ∙ !	

	
(ii) as	a	consequence	the	moment	experiences	a	torque		

	
! = !×!	

	
(iii) the	torque	is	equal	to	the	time	derivative	of	the	angular	momentum	

	
! =  !ℏ!!" = !×!	

multiply	by	γ	
!
!"! = !!×!	

	
To	show	this	let	us	use	a	frame	of	reference	rotating	w.r.t	the	fixed	axes	with	an	angular	velocity	represented	by	the	vector	w.	Classical	
mechanics	tells	us	that	the	evolution	rates	of	M	as	viewed	in	the	fixed	(lab)	frame	are	related	by		
	

!
!"! !"#

= !
!"! !"#

+!×! = !× !!+! 	
	
We	choose	! = −!!, so	that	the	effective	field	vanishes,	and	M	is	time	independent	in	the	rotating	frame.	From	a	lab	point	of	view	it	is	
therefore	rotating	around	B	with	a	rotation	vector	! = −!!.	In	a	fixed	field	B0,	the	rotation	(or	precession)	frequency		
	
	 !! = −!!!.	
	
is	called	the	Larmor	frequency.	



Precession (Callaghan)

https://www.youtube.com/watch?v=7aRKAXD4dAg

https://www.youtube.com/watch?v=7aRKAXD4dAg


The NMR Signal

The precession of the magnetization vector is what we actually detect in a 
pulsed NMR experiment. All we have to do is to mount a small coil of wire 
round the sample, with the axis of the coil aligned in the xy-plane.

The precessing magnetization induces a current in the coil which we can 
amplify and then record – this is the free induction signal or, more usually, 
free induction decay (FID).

ω0 = −γB0 in rad s−1 

or 

υ0 = −γB0/2π in Hz
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At time zero the magnetization is positioned such that its x-component is M0 sinβ 
and its y-component is zero. 

After time t, the angle through which the vector has rotated is ω0t, so the x- and 
y-components of the magnetization are M0 sinβ cosω0t and −M0 sinβ sinω0t.

Time Evolution of the Transverse Magnetization



How can we tip the magnetization out of equilibrium? 
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Perturbing the Magnetisation 

1. Brute force & sudden change

A sudden change in the direction of the magnetic field could induce a 
perturbation of the magnetisation… but sudden is not practical.

ωx = −γB

Mz

My



B1

B0   Btot

Adding a second component to the field in a different direction could also in 
principle perturb the magnetisation… 

In practice, γB1 < 100 kHz (remember γB0 is typically 500 MHz)

Perturbing the Magnetisation 

1a. Adding an Extra Field




Perturbing the Magnetisation 

Magnetic Resonance


B1 = B0 − B1xcosωt + B1ysinωt

Adding a small oscillating field B1 perpendicular to B0 can 
cause resonance effects: even for B1 << B0

B0  

B1
ω



Perturbing the Magnetisation 

Magnetic Resonance


B1 = B0 − B1xcosωt + B1ysinωt

To study this time dependent interaction, the most enlightening method is to 
remove the time dependence by transforming to a rotating frame.

This can be understood geometrically (visually) or mathematically.

B0 

B1
ω



(a)

(b)

The Rotating Frame


A child riding on a merry-go-round executes a 
complex motion as seen by a fixed observer. 

If the observer stands on the merry-go-round 
the child appears to be executing a simple up–
down motion.
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The Rotating Frame


In a reference frame rotating at the Larmor frequency, transverse magnetisation 
appears static (here fixed on the x axis).

(Of course the precession has not really stopped, it is just that we are viewing it 
differently.)



The Reduced Field in the Rotating Frame


If the rotating frame frequency is ωrot. frame, the apparent (or effective) frequency of 
the Larmor precession in such a frame will be (ω0 − ωrot. frame).

This difference frequency is called the offset, and is given the symbol Ω:

Ω = ω0 − ωrot. frame

Following this line of argument we can say that if in the rotating frame the precessional 
frequency appears to be Ω, then the apparent magnetic field ΔB is given by

ΔB = −Ω/γ.

ΔB is called the reduced field in the rotating frame. Clearly if the offset is
zero, then so too is the reduced field.



Effective Fields in the Rotating Frame


If the offset is zero, then so too is the reduced field ΔB. More generally if the oscillation 
frequency of the B1 field ωrot. frame is chosen to be close to the Larmor frequency  
ω0 (such that ΔB is comparable to or smaller than B1), then the effective field can be 
significantly tilted away from the z axes in the rotating frame.
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Resonant Pulses


B1

Mz

My

When ΔB = 0 the B1 irradiation is said to be “on resonance” and the effective field is 
purely transverse. The magnetisation precesses around the B1 field (here applied 
along the x axis of the rotating frame) with frequency ω1 = −γB1. 

If the irradiation is applied for a time τ such that ω1τ = π/2, Mz will be converted 
into pure My, for any value of ω1.

We refer to this as a π/2 (or 90°) pulse



Resonant Pulses (Callaghan)


https://www.youtube.com/watch?v=7aRKAXD4dAg

https://www.youtube.com/watch?v=7aRKAXD4dAg


B1

B0
B0

Mz



What Happens After a Pulse? Relaxation

After a pulse, the system will oscillate under Larmor 
precession, but it must inevitably return to equilibrium.

The longitudinal component (i.e. that aligned with the 
field (here z)) relaxes towards the equilibrium value (a 
non-zero value) M0.

The transverse components both relax back to zero.

Evolution of Mz towards equilibrium modifies the total 
energy of the system: there must be exchange of 
energy with the lattice.

Relaxation of the transverse components does not 
modify the total energy.

We thus distinguish longitudinal relaxation (or spin-
lattice relaxation), T1, from transverse relaxation (or 
spin-spin relaxation) relaxation, T2.

 

     

     



The Bloch Equations


     

     

The	relaxation	equations	are	therefore:	
	

!
!"!! = − 1

!!
!! −!!  	

	
!
!"!!,! = − 1

!!
!!,! 	

	
In	usual	NMR	experiments,	one	uses	in	addition	to	the	main	field	B0	much	
smaller	time	dependent	fields	that	do	not	significantly	alter	the	direction	and	
size	of	the	total	field,	and	therefore	does	not	change	the	relaxation	rate	T1	nor	
(usually)	T2.		
	
By	adding	the	relaxation	terms	to	the	evolution	due	to	Larmor	precession	one	
obtains	the	Bloch	equations:	
	

!
!"! = !!×!− 1

!!
!! −!! !−

1
!!

!!!+!!!  	
	
where	i,	j	and	k	are	unit	vectors	in	the	x,	y	and	z	directions	respectively.	
	



 B1  



Conclusions
• Due to the slight preference of nuclear magnetic moments to align with a 

magnetic field, placing a sample in a field induces a very small bulk 
magnetism of the sample.


• This bulk magnetic moment can be described by a magnetisation vector.


• At equilibrium the magnetisation vector is aligned with the field.


• Resonant oscillating fields applied in a direction perpendicular to the main 
field can induce motion of the magnetisation vector. Pure transverse 
magnetisation can be created by an on-resonance pulse with ω1τ = π/2.


• The magnetisation precesses around the magnetic field at the Larmor 
frequency. This precession induces an oscillating voltage in a detection coil.


• The longitudinal and transverse components of the magnetisation will relax 
back to equilibrium with rates T1 and T2 respectively. The Bloch equations 
provide a phenomenological equation of the motion of the magnetisation.



Homework
(Each group should jointly finalise and upload the 

answers to the jigsaws.)

before next week's class:

read Chapter 3 of 
P.J. Hore, “Nuclear Magnetic Resonance,” 2nd Edition, 

(Oxford University Press, 2015)

A pdf file of the Chapter is available on the course 
moodle page.

You do not need to read the greyed out parts
(but you can if you want to)
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